Textbook of Neural Repair and Rehabilitation

Volume 1
Preface; Neural repair and rehabilitation: an introduction; Part A. Neural plasticity: Part A1. Cellular and molecular mechanisms of neural plasticity: 1 Anatomical and biochemical plasticity of neurons: regenerative growth of axons, sprouting, pruning, and denervation; supersensitivity; 2 Learning and memory: basic principles and model systems; 3 Short-term plasticity: facilitation and post-tetanic potentiation; 4 Long-term potentiation and long-term depression; 5 Cellular and molecular mechanisms of associative and nonassociative learning; Part A2. Functional plasticity in CNS system; 6 Plasticity of mature and developing somatosensory systems; 7 Activity-dependent plasticity in the intact spinal cord; 8 Plasticity of cerebral motor functions: implications for repair and rehabilitation; 9 Plasticity in visual connections: retinal ganglion cell axonal development and regeneration; 10 Plasticity in auditory functions; 11 Cross-modal plasticity in sensory systems; 12 Attentional modulation of cortical plasticity; Section A3. Plasticity after injury to the CNS; 13 Plasticity in the injured spinal cord; 14 Plasticity after brain lesions; 15 From bench to bedside: influence of theories of plasticity on human neurorehabilitation; Part B. Neural Repair: Part B1. Basic cellular and molecular processes; 16 Neuronal death and rescue: neurotrophic factors and anti-apoptotic mechanisms; 17 Axon degeneration and rescue; 18 Adult neurogenesis and neural precursors, progenitors, and stem cells in the adult CNS; 19 Axon guidance during development and regeneration; 20 Synaptogenesis; Part B2. Determinants of regeneration in the injured nervous system; 21 Inhibitors of axonal regeneration; 22 Effects of the glial scar and extracellular matrix molecules on axon regeneration; 23 Trophic factors and their influence on regeneration; 24 Intraneuronal determinants of regeneration; Part B3: Promotion of regeneration in the injured nervous system; 25 Cell replacement in spinal cord injury; 26 Dysfunction and recovery in demyelinated and dysmyelinated axons; 27 Role of Schwann cells in peripheral nerve regeneration; 28 Transplantation of Schwann cells and olfactory ensheathing cells to promote regeneration in the CNS; 29 Trophic factor delivery by gene; 30 Assessment of sensorimotor function after spinal cord injury and repair; Part B4. Translational research: application to human neural injury; 31 Alzheimer's disease, model systems and experimental therapeutics; 32 Biomimetic design of neural prostheses; 33 Brain-computer interfaces for communication and control; 34 Status of neural repair clinical trials in brain diseases; Index.

Volume 2

Voir :
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521856426